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% Department of Mathematical Sciences, Faculty of Engineering Sciences, Osaka University, 
Toyonaka, Osaka 560, Japan 
$ Department of Mathematics, University of Melbourne, Parkville, Victoria 3052, Australia 

Received 13 February 1995 

Abstract We consider the recently obtained integral representation of the quantum Knizhnik- 
Zamolodchikov equation of level 0. We obtain the condition for the ink@ kemel such that 
these solutions satisfy three axioms for the form factor in the manner of Sm@ov. We discuss 
the relation between this integnl representation and the form factor of the XXZ spin chain. 

1. Introduction 

In [l] an inte,.ral formula of the Smirnov-type was given for the quantum Knizhnik- 
Zamolodchikov (q-u) equation [Z] of level 0 azociated with the vector representation 
of the quantum affine algebra U q a .  The U,(&) generalization was studied in [3]. In 
these formulae, the freedom of solutions to the q-KZ equation corresponds to the choice of 
integral kemel with the cycle of integration being fixed. This paper is a step towards the 
determination of the integral kemel given in [ l ]  by studying the annihilation pole structures 
of the solutions. 

In a pioneering work [4], Smirnov constructed the integral formulae for the form factors 
of the sinffiordon model that satisfy three axioms: (i) S-matrix symmetry; (ii) (deformed) 
cyclicity; (iii) annihilation pole condition. He utilized these axioms to construct the matrix 
elements of local operators. References [l ,  31 were based on Smimov's observation [SI that 
(i) and (ii) imply the q-KZ equation of level 0. In these works, instead of solving the q-KZ 
equation directly, a system of difference equations arising from (i') the R-matrix symmetry 
and (ii) the deformed cyclicity were considered. At this moment the integral kemel of 
the formula is arbilmry except that it satisfies appropriate symmetries and quasi-periodicity 
conditions. These results can be easily modified so as to satisfy (i) instead of (i') for the 
S-matrix having crossing symmetry. In this paper we shall derive the co$ition for the 
integral kernel such that these solutions satisfy the third axiom for the U,(sI,) case. 

The q-m equation was originally introduced by Frenkel and Reshetikhin [2] and was 
found to be the master equation for the form factors of solvable lattice models with quantum 
affine symmetries [6,7]. In this approach, the form factors can be calculated by utilizing the 
vertex operators of the algebra. (See [8,9] for explicit calculations.) Moreover, the form 
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factors of appropriate operators were shown to satisfy Smirnov's three axioms [7,10,11]. 
Since our S-mahix coincides with the one appearing in the XXZ model, our solutions are 
expected to be related to the form factors of some operators in the model. 

This paper is organized as follows. In section 2 we formulate the problem and summarize 
our result. In sections 3 and 4 we prove our result. In section 5 we discuss our solutions 
in the context of the xxz model. 

2. Problem and result 

The purpose of this section is to formulate the problem, thereby fixing our notations, and 
to state our result. 

For a fixed complex parameter q such that 0 < 141 < 1, let U = U;($) be a @ algebra 
generated by ei, fi and t i ,  i = 0,1, that satisfy 

I t, - t; 
4 - 4-I f i  [ e i , f j ]  =aij- ~ pe.r-1 =q%-2 ej t . f t - l  = q2-48!i 

' J i  1 J i  

ti$ = $ti t.t-1 t i  = tF'Ci 1 

and the Sene relations 1121. Let A be the following coproduct of U: 

A(ei) = ei @ 1 +ti @ ei 

and set A' = cr o A, where u(x @ y) = y @ x  for x ,  y E U. Set V 2 @U+ $@U- and let 
(XI, V), 5 E C\(O], signify the vector representation of U defined by 

A(fi) = fi @ t;' + 1 @ fi = ti @ti  

q ( e l ) ( v + ,  v-)  = t(o, U+) 
n<(ti)(~+, U-) = (qu+, 4-lv-1 

n<(fO)(v+, U-) = 5-'(0, U+) 

n(t.,.....c,w)CY) = (xi-, @ ...@r(;v) 0 A(N-')b') 

nr(fi)(u+, U-) = <-'(U-, 0) 
Z<(eo)(u+, U-) = HV- ,  0) 

Jrdto)(u+, U-) = (q- lu+,qu-) .  
(2.1) 

Later we shall use the following abbreviation for its tensor product representation via A: 

y E U. 

Let R(C) E End(V @ V )  be the R-matrix of the six vertex model 

where the non-zero entries are given by 

= R(C)II = 1 
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where 

and z = 5'. In what follows we shall work with the tensor products of the vector space 
V. Following the usual convention, for M E End(V) we let Mj denote the operator on 
VON acting as M on the jth tensor component and as the identity on the other components. 
Similarly for X = S or R ,  we let X j k ( < )  ( j  f k) signify the operator on VON acting 
as X ( 5 )  on the ( j ,  k)th tensor components and as the identity on the other components. 
In particular: we have X&) = ekxj&)pjk, where P E End(V @ V) stands for the 
transposition P ( x  @ y) = y @ x .  We often use the abbreviations 

x1 ...., NIN+l(5I,..~.~N~~N+l) =~l,N+l(~l/~N+I)"'~N.N+l(~N/~N+l) 

XN+lII ..... N(5N+II1'1,... 3 5N) xN+l.N(~N+I/~N)"'XN+I.I(~N+l/~l) 

where X = S or R. 
The main properties of S(5) are the Yang-Baxter equation 

~12(<1/52) SI3 ($1 lr3)Su (52IC3) = s23 Wb) SI3 (51 I 5 3  )SlZ(51/52) (2.3) 

S(1) = -P (2.4) 

Sl2(51/52)~21(52/5I) = 1 (2.5) 

the initial condition 

the unitarity relation 

where U, = U -  @ U+ +an+ @U-, a = f. 
Let V("') be the subspace of VON defined by 

EN V("') = @ CIJ @ . . . @ v ex 

where the sum is taken over ~j = fl with fixed 

n = ti{j I ~j = -1 1 = ti{j I sj = +] (n+Z = N )  

and let us consider a V("')-valued function 

GF')(<l, . . . ,CN) = Usl @ . . . @ vSNGF"(r1, . . . , [ N ) " ' . ' ~ ~  (E = i). 

Our probIem is to obtain the function family GfI)(Cl, . . . , FN), E = f, n, 1 = 1,2,. . ., 
that satisfy the following three axioms. 

Axiom 1. S-matiix symmetry 

(2.7) 
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Axiom 3. Annihilation pole condition. The GF')({) has poles at CN = -u<N-I /q  (o = &) 
and the residue is given by 

RescN/(-.,cN-,q-i)=i GF')(<) = $ (I - U ~ ~ ' ~ ~ ' - ~ ' ( - ~ S N - I ~ ) D ~ - ~ ' ~ N - I , I  ,..,.N-z(SN-I IS')) 

Here rik)(C) = E  r(k)(<), rCk)(<)  are scalar functions satisfying 

(2.9) ("-11-1) xG,, (<')@U,. 

r(k)(()r(k)(-ocq)  = uN (2.10) 

D(k) = diag(6*),S(k)-1), and 1 is the identity operator. In this paper we employ the 
convention Res,/y,l G(x) = F ( y )  when G(x)  = -F(y)+0(1)  at x N y ,  and we often 
use the abbreviations (5 )  = ((1,. . . , S N )  and (5 ' )  = (51,. . . , < ~ - 2 ) .  In section 5 we shall 
discuss the physical meaning of the above axioms and the reason why we introduce dk)(5) .  
Remark 1 .  The action of the scattering matrix S(5) preserves the values of n and 1 and 
the S-matrix also satisfies &-symmetry. Therefore, we can consider G t ' ) ( ( )  E V@') and 
may assume n < 1 without loss of generality. 

Remark 2. The condition for r")(<) (2.10) follows from the consistency of the three 
axioms. This can be seen from (4.3) and the argument below it. Similarly we can show 
that the diagonal operator rLk)(c)D(k) depends only on 1 - n. 

Hereafter we shall restrict ourselves to the case 6(k) = q-'/' and n < 1, since for this 
choice the solutions to the first two axioms have been obtained in [I]. In this paper, we 
shall derive the condition for these solutions to satisfy the third axiom. Before we state 
our result, we shall explain how the solutions to the first two axioms are obtained from the 
results of [l]. Set 

(2.11) 

where 

Then, the first two axioms can be recast as 

(2.12) 

( I W p  (<] . . . . , h ) n S j / 5 1 .  (2.13) P ~ Z . . . P N - I N G ~  ( S z . , . . . , S ~ , h q - ~ )  =r,(D)D, 

Therefore, though the deformed cyclicity (2.13) is different from that given in [l] by a 

-02') -(W 
PjjtIG, (...,Sjtl,Sj,...)=Rjj+l(Fj/Sj+l)G, ( . . . , S j , S j t r ,  ... ) 

N 
-("I) 

j = 2  

-W multiplication factor, G, ( 5 )  is similarly shown to have the integral formula 

Here m = n - 1 for n = I and m = n for n < 1, and 
A("')(xI,. . . , xmlzl, . . . , znlzn+1.. . . , ZN) is the same polynomial as obtained in [I]. (See 
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(3.7) below, and [11 for furtherdetails.) {A['@)(XI, . . . , x m l < l ,  . . . , < N )  E V(nl) is the vector 
defined from this polynomial as 

t;.j+i(A("')}(xr ,..., x,I .... F j + i , F j .  ... ) 

where, and hereafter, r = q-I. The integration &, dx, is along a simple closed curve 
C") = C("(z1,. . . , Z N )  oriented anti-clockwise, which encircles the points z j r - I - & ,  

1 < j < N ,  k 0, but not z J d + 4 k ,  1 < j ,  < N ,  k > 0.  the kernel W:') has~the 
form 

= R j  j + i ( < j / C j + ~ ) ( A ( ~ ' ) ( ~ i , .  . . 3 X m I . .  . , < j ,  < j + l , .  . .) 

m N  

*:')(XI, .. . , X m l < l , .  . . , C N )  = f i ? " ( X I ,  ... , XmlCl, . . . , < N )  n n @ ( X p / z j ) .  
,=I j=I  

Here 

and fi:') is an arbitrary function that has the following properties: 
(i) it is anti-symmetric and holomorphic in the X ,  E C\[OJ; 
(ii) it is symmetric and meromorphic in the <j E C\{OJ; 
(iii) it has the two transformation properties 

(2.16) 

Note that the first transformation function (2.15) takes a form different from that given in 
[l] because of the modification of (2.13). 

Now we are in a position to state the main result of this paper. 
Theorem2.1. The function family G2d'(<) defined in (2.11) and (2.14) satisfies the 
annihilation pole condition (2.9) if 9:') satisfies the recurrence relation 

f i ~ " ( ~ l ~ . ~ . ~ ~ m - l ~ Z N - - I ~ ~ < I ,  . . . ? < N - ~ I  < N - I , - U < N - I r - ' )  

f i k - " ' - ' ) ( X l , .  . . , & - I  IC]. . . . , C N - 2 )  
m-l 

F 1  

- - c(nf)  zN-I N-m-I f l 0 ( q x p / z N - 1 1 4  2 ). (2.17) 

where 

e w  = ( z ;  q )m(4/z ;  4)- 

There exists a non-tnvial example of the function fit') which satisfies the above 
conditions ,for a particular choice of r("(5). We shall check the 
(- . . . - + . . . +) component of the annihilation pole condition (2.9) in the next section 
and show that theorem 2.1 follows from it in section 4. 

(See section 5.) 
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3. The annihilation pole condition for the extreme component 

In this section we consider the (-. . 
(2.9). In terms of E?), it can be recast as the following proposition. 

Proposition 3.1. If t$"') satisfies (2.17), then 

. . +) component of the annihilation pole condition 

Proof. From the definition of the R-matrix, the RHS is equal to 

Due to the R symmetry (2.12) we have the relation 

where 

E("-lJ-l) &I (5 ' )  L G, (1 < j < n). 
Note that (3.2) contains only one term proportional to G,I (5') when expressed in terms 
of '$~l'-l)(~f). Since the result should be symmetric with respect to (1. . . . , Sn, we obtain 

-(n-ll-l) L + +  (51, . . ., (n, ( j ,  5 n + 1 , . .  <N-Z)-"'- 

-(n-II-I) 

Let us turn to the LHS. In the calculation of the residue of 
$If)(() +...+ 

E 

at CN = - U ~ N - I ~ ,  we rewrite the integration as 

in order to avoid the pinch of the contour Here C'(N) is a simple anti-clockwise closed 
curve which encloses the same poles but z ~ 7 - I  as for CcN), and we have used the symmehy 



Annihilation poles of solutions to the pKz equaiwn 3485 

of the integrand with respect to the xu's. Since the integrand is regular at C N  = - U < N - I T ,  

only the second term of the RHS of (3.4) contributes to the residue. Note that from (2.15). 
(2.17) is equivalent to 

fif')(xl, .. . . xm- l ,  ZN-Irl<' ,  CN-19 -U<N-lr)  

02-IJ-l)(x1, ..., X,_ l lC ' )  

N-2 
= (_~)N-m+Ir3N/Z-m-2C("l)uN+l ( l - n ) ( -  re UCN-iq) n rj<N-I 

j=l 

We thus find 

with z' = (22, . . . , z.) and z" = (z"i-1, . . . , ZN-2, Z I ) .  

Proof. Let us recall [l] that 



and the determinant structure of A("'), we find that the LHS of (3.6) is a polynomial in w. 
From the following properties ((4.3) and (4.15) in [l]): 

A("') , ( In],  . . . , u,lbl,. . . , br) is linear with respect to the bj's 
f:""(wrlzl,. . . , znIzn+l,. . . , ZN-2, w ,  wr') is independent of w 

we further find that its degree is equal to m - 1. Thus, the LHS can be determined from 
n(> m - 1) values at w = ZX, 1 < k < n. For example, when w = 21 ,  using the recurrence 
relations of A?') and fid) 111, its value is found to be 

where z' and z" are the same abbreviations as used in the definition of Then, noting 

we obtain (3.6). a 
After the substitution of (3.6) into (3.5) we can replace C'(",(zl, ..., Z N )  by 

C(N-2)(z j , .  . . , Z N - Z ) .  Moreover, due to the same argument as that given in the proof 
of lemma 3.2 in [l], the terms proportional to h(N-2)(~,lzl,. . . , Z N - Z )  vanish after the 
integration. Hence, proposition 3.1 is proved. 

4. Proof of the theorem 

In this section we shall complete the proof of theorem 2.1. Firstly, consider the following. 

Proposition 4.1. If the function family GFr'(Q, . . . , < N )  E V('), E = i, n, I = 1,2, . . ., 
satisfies: 

(i) S-matrix symmetry (2.7); 
(ii) deformed cyclicity (2.8); 
(iii) the (- . . . - +. . . +) component of the annihilation pole condition (2.9); 
(iv) IT(< ,...., <,,~(fo)(Gf"((~, . . ., < N I )  = 0, then the function family GF')((j, . . . , < N )  

satisfies the annihilation pole condition (2.9). 
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PmoJ In this proof, for Y E VQN we define Y[Qal E V@”-2 by 

Y = c Y[elmZl @ v,, @ v, 
ale2 

and call it the [ E I E Z ]  component of Y.  
Let A F : ) ( ~ ’ ~ ~ N - I )  and € $ ~ ) ( C ’ ~ ~ N - I )  denote the LHS and RHS of the annihilation pole 

aim of this proof is to show that K$$ vanishes under the four assumptions given above. 
From the Yang-Baxter equation (2.3) and assumptions (i) and (iii) we obtain 

condition (2.9) respectively, and set KJ$)(<‘l<,+l) = A:,- n l )  ( 5  I 1 r N - 1 )  - B t : ) ( 5 ’ 1 < N - ] ) .  The 

Kg(5’15N-l)[++j = 0. (4.1) 

The intertwining property of the S-matrix implies 

SN-111 . . . . , N - Z ( ~ N - I ~ ~ ’ ) ( ~ ~ ,  @ XcN.,) 0 A’(Y) 

Therefore, noting G$-If-’) E V(”-”-” we find from assumption (iv) that 

= (X<’ @ XCN-O 0 A(Y)SN-III ,..., N - Z ( 5 N - 1 1 5 ’ )  Y E U. 

(4.2) “ 1 )  I X ~ < , , ~ ~ . , , - ~ < ~ - ~ ~ ~ ( ~ ~ ) K ~ . ~  (I‘ 1 S N - l )  = 0. 

Equations (4.1) and (4.2) imply that K,(“$ has the form 

nl )  I ,(Ill) I K;,< (5  I h - 1 )  = Kc.< (F 1FN-1)  @ U “ .  

We shall now show K;::) = 0. Assumptions (i) and (ii) give the q-KZ equation 

nl )  I n l )  I 
P N - - I N G I  (t . t N - i ,  LV) = r ~ ‘ - n ’ ( 5 N q z ) D ~ ~ ~ ) S 1  ..... N-21N-l  (C’ICM*)G! ( 5  , < N q 2 .  5N-i) 

P N - I  NAtL)(<’I - gcN-1 r )  = - ~ ~ 1 - ” ’ ( ~ N - I ) ~ ~ ~ ~ ) ~ I . . . . . N - 2 ~ N - I ( Z “ ~ ~ N - I ) ~ ~ , u  Ill)  ( 5  I 1 5 N - 1 ) .  

(4.3) 

Taking the residue at <N = - a c N - l r  we obtain 

From the unitary and crossing symmetry of the S-matrix (2.5), (2.6), and the condition 
for dk)(<) (2.10), it follows that B $ : ) ( < ‘ ] < N - ~ )  also satisfies the above equation. From 
these we find 

,(Ill) I 
OKe.< (5  I - a5N-15) Bun 

1(nl) r = - $4 (5N-l)D~r;)SI ....,N-ZIN-l(5’15N-I)~E,n ( 5  1 5 N - 1 )  @ U , .  

By considering the difference of the [-+I component and a x  the [+-I component of the 
above equation, we obtain 

M‘””(5’I~N‘N-1)K~~~f)(5’15N-1) = 0. 

Here 

M(n1)(5’15~-~) = VNLI ( I J ~ ~ ~ )  ~ I . . . . .  N--zIN-I(C~IJN-I)) E End(VQN-’) 
p) = ( 1 0  ) D(k) 

0 -1 

and trN-l signifies the trace on the (N - 1)th space. Since the matrix M(”’) is invertible 
for generic 51 (for example, consider the special case 51 = ... = c&I), we obtain 

0 Ke,u r(n1) (5‘ , ICN-1) =O. 
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We have already shown that the function family GFf)(() defined in section 2 satisfies 
the assumptions (iHiii) of proposition 4.1. Therefore, theorem 2.1 is proved'if we prove 
the following lemma. 

Lemma 4.2. 

From the recurrence relation of A@') [l] we can see that P(n-l'+l) satisfies 

p(n-lt+l) (XI,. . . ,X,IZ',~IZ'', as2) 
m m 

&=I "=I 

- - n (XM - ar) E(- l)m+Yh"-2'(x. Id, z")P ("-2 0 (XI, . i . , X, IZ' "") 

where z' = (21,. . . , ~ " - 2 )  and z" = (2". . . . , Z N - I ) .  We further find from the properties 
of A("') as a polynomial [I] that P("-If+l) is a homogeneous polynomial of degree 
(;) + (n - l)Z - 1, antisymmetric with respect to the xM's and symmetric with respect to 
(z1,. . . , Zn-] } and { z n , .  . . , ZN]. Moreover, from the power counting we obtain P(Of+l) = 0. 

0 From these properties we can show P("-'l+l) = 0. 

5. Discussion 

In this section we discuss the function family CF')(() satisfying the three axioms (2.7)- 
(2.9) in the context of the xxz model in the ferroelectric regime (-L< q < 0). In [6,7] 
this model was solved by utilizing the representation theory of U&). First, following 
their notation, we summarize the necessary results for this model. (See [6,7]>or further 
details.) Let V(Ai), i = 0, 1, be the level 1 highest weight module of U,,(51z) and set 
'H = V(A0) 6B V(A1) and pj) = V(Ai) @ V(Ajj)rh. Here the superscript *b signifies the 
dual module regarded as a left module by some anti-automorphism b. Then, the space 3 
on which the xxz Hamiltonian acts is identified with 

3 = 'H g, x*b = @ 3'"). 
i . j A . 1  

In this space F, there exist two ground states of the Hamiltonian which belong to FtW) and 
3'"). We denote them and their dual vectors by Ivac)(i) and ci)(vacl, i = 0.1, respectively. 
The creation and annihilation operators g ( < ) , q e ( < )  E ~ i j H o m ( ~ ( i j ) , ~ l - i j ) ) ,  E = 



~~ ~~ 
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iz, 151 = 1, that diagonalize the Hamiltonian can be constructed in terms of the vertex 
operators of the algebra. They have the property that 

coe(Olvac)(i) = 0 (i)(vaclco~(c) = 0 

and the whole space 7 and its dual space F are spanned by the vectors 

co~~o:;(51)...9~"(5~)Ivac)(i) and (i)(VaCl~"(51)...rPeN(C~) 

respectively. Further, on Fcij) these operators satisfy 

(i =0,1,  N = O ,  1, ... ) 

and the commutation relations 

In the above equations, 

a*"(<) = E u e @ p f , ( < )  q"(<) =cuc@qO"(<) ~$Hom(jc( i j ) ,V@F( ' -~ j ) )  

Pi is the projection operator to the subspace @ j a , l . F ( i j )  and a(<) = CmcZ <". Note that we 
consider the creation and annihilation operators in the principal picture. (See, for example, 
equations (2.2). (4.8) and (4.9) in [ l l ]  for the above properties of these operators in the 
principal picture.) 

Now we shall discuss the form factors of this model. For simplicity, we shall consider 
an operator U E End(?=) that has the form id @ 0, 0 E End(%*), and satisfies 

E L ij 

(id@ Y"(<))U = r(-(q)DU(id@ @"(()). (5.2) 
Here, r(<)  is a scalar function, D is a diagonal matrix acting on the space V and 
@"(<) : 7i*b + 7-1" @ V, is the type I1 vertex operator in the terminology of [6,7]. 
We denoted the vector representation defined in (2.1) by V, . For such 0 we introduce the 
form factor by 

G : ~ ) ( c ~ .  ..., t N )  = ei x (i)(vaclOv*v(~~). . .co*v(~l)~~aC)(i+N) (E  = *U 

The commutation relations among the creation operators imply the first axiom. From (5.1) 
we have 

i d . 1  

G:N)(<i , .  . . , -<j,. . . , <N)-."-+"'+ - - (-])N-j+~(~~j)G~~)(<], , , , , Cj, , , , , <N)-"-+-.+ 

(5.3) 
where H is the step function and n is the number of the superscript (-) of GLN). Note that 
for GPi)(<)  defined in section 2, condition (5.3) is equivalent to 

(5.4) @ ' ' ( X ~ , . . . , X ~ I < ~  ,... , - < j , . . . , < ~ ) = f i - ~  (XI ,...,X~I~I,....I~....,~N). 
Let <* signify (1 f T) ( ,  0 i q < 1, for 5 ,  and 5'' be the abbreviation ((1,. . . , C N - I ) .  Set 
re(<) = Er(<) as before and set 

("1) 

~ " - 2 )  k 
B.o,k (51, ..., ~ N - I ) = ~ ~ . ~ + ~ " ' ~ N - ~ . N - I G ~ ~ - ~ ) ( ( I  ,..., < N - I ) ~ U ~ .  
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Then, as in [Ill, thanks to condition (5.2) the following matrix element of O c a n  be 
expressed in terms of the form factors in two different ways: 

C Ei  x ( i )  (vaclvl (<N ) ~ a * ~  ( < I + - ] )  . . . 6 0 * ~ ( < 1 )  I vac) (i+N) 

The last equality of (5.5) implies that GLN)(<).also satisfies the second and third axioms. 
Conversely, suppose that we are given GP‘)(<) satisfying the three axioms and (5.3); we 
can then define an operator 6 E End(3) by giving the matrix elements in terms of GF’)(<) 
in two different ways as done in the original work 141. The second and third axioms 
ensures the equivalence of the two expressions. (Equation (5.5) shows one simple example.) 
These two expressions enable us to calculate the commutation relations of the thus defined 
operators, though knowledge of the poles, other than annihilation poles, of the Gid)(<) is 
necessary. The classification of all solutions to the conditions (2.15)-(2.17), and (5.4) and 
the identification of them with 6 E End(F) are still open questions. 

Finally, we shall give an example of @’I) in the case 
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